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THEORETICAL ANALYSIS OF THE STATIC GENERAL INSTABILITY
OF AN ORTHOTROPIC CIRCULAR CYLINDER
SUBJECTED TO AN AXIAL LOAD, END MOMENT, AND UNIFORM RADIAL PRESSURE
by
s +
William S. Viall
Carl C. Steyer

1. SCOPE

This analysis obtains numerical results using a digital computer program for the

general instability eigenvalue problem that is presented for the dependent buckling load
condition at any combination of the independent loading and geometry. It is not intended

that this analysis be experimentally verified as a part of this investigation.

if. INTRODUCTION

Missile tank design is subjected to two design criteria; the material strength for all

possible maximum load conditions, and the structural stability at these possible maximum
load conditions as well as infermediate loads. The analysis of this report is limited to the
stability criteria of missile design.

A missile tank is loaded with different combinations of axial load, end moment,
and radial pressure. The axial load, either compressive or tensile, is a constant force per
unit cross-sectional area and is colinear with the generating element of the tank. The end
moment is a varying force per unit cross-sectional area and is colinear with the generating
element of the tank. This force varies linearly with the distance between a diameter that is
nomal to the plane of the moment, and the element of cross-sectional area. The radial
pressure is internal or external, depending upon the sign given to the pressure difference.

The positive directions of axial load, end moment, and radial pressure are as shown
in Figure 2 and are chosen to induce tension on the element of the tank at the origin of the

axes, Figure 1.

+ Research Assistant, University of Alabama Research Institute
++ Professor of Engineering Mechanics, University of Alabama, Huntsville, Alabama
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Functions performed by missile tanks require that they be stiffened axially and cir-
cumferentially with internal baffles, internal and external stiffeners, bulkheads, etc.

These baffles and stiffeners are integral parts of the missile tank and it becomes possible to
analyze the tank as an orthotropic circular cylindrical shell. The orthotropic circular
cylindrical shell is called circular shell or shell in the remainder of this report.

The loads applied to the shell are not functions of time, therefore, the investigation
is limited to the static case, and the dynamic case is neglected.

The technique used in this investigation of the cylindrical shell parallels the work
of Bodner (1)*, in that the general instability differential equation of equilibrium developed
is a Donnell type differential equation and is obtained by the application of variational
methods to the expression for total change in energy during buckling.

Results can be obtained from the Donnell Type differential equation by any one of
several different methods: Ritz Method, Fourier Series Method, Galerkin Method, Method
of Frobenius, etc.; all of which will yield a satisfactory solution. The Ritz Method is used
in this investigation. The results obtained by the Ritz Method are as accurate as the assumed
deflection expression and the solution becomes an exact solution when the deflection expression
takes the form of an infinite Fourier series. The Ritz Method is mathematically the simplest
of the methods mentioned above and it is readily programmed for digital computer applica-
tions.

The points of stability for the total change in energy expression of a conservative
system are defined by the law of minimum potential energy when the variational principal
is applied to the total change in energy. The first variation of the total change in energy
is equated to zero, therecby obtaining the intrinsic boundary conditions and the equilibrium
equations of the system. The Donnell Type differential equation is obtained by applying a
differential operator to the equilibrium equations of the system. An assumed deflection
expression is substituted into the Donnell equation and the resulting residual force equation
is minimized for each of the unknown constants of the deflection expression. This minimi-
zation yields a system of homogeneous simultaneous equations, and the stability determinant

of these equations is solved for the independent variable.

*Indicates reference number - see Appendix B.
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The law of minimum potential energy requires that the second variation of the total
change in energy expression of the system be positive for the points of stable equilibrium
and negative for points of unstable equilibrium. The second variation is not performed due
to the anticipated difficulty of the mathematics, and the minimum positive value of the
independent variable is assumed as the point of stable equilibrium.

Experimental evidence obtained by Harris, Suer, Skene and Benjamin (2) indicates
that isotropic circular shell test specimens subjected to axial load with and without radial
pressure fail somewhere between the stable and unstable equilibrium points and that the
failure point is primarily dependent upon the quality of the specimen. The almost perfect
specimens fail at the point approaching the point of unstable equilibrium. As the imper-
fections of the specimens become larger or more numerous the specimen fails at a point
closer to the point of stable equilibrium. Theories developed for unpressurized cylinders
with axial loads by von Kdmdn and Tsien (3), Leggett and Jones (4), and Tsien (5) using
the large deflection theory have attempted to explain the deviation beiween theoretical
and experimental results. These theories are still considered as inadequate since their re-
sults cannot be readily adapted as design criteria. A similar approach was used for pres-
surized cylinders with axial loads by Donnell and Wan (6) with more success, but a deviation
still exists.

Small deflection theory of shell analysis states that all terms greater than second
degree in the total change in energy expression may be neglected. The small deflection
theory is used in this investigution and allows the development of the Donnell Type linear
differential equation which can be readily solved for a certain particular type of loading.
That the small deflection theory is applicable to certain shell configurations is questioned
by some investigators as indicated above. The answer to this question is left for further
analytical work associated with the experimental evaluation of this investigation.

The classical small deflection theory for isotropic shell stability is limited to the
range R/h-values** less than 200. Some missile tanks have R/h-values of 1000 and there
have been indications that this value may reach 2000. This indicates that the R/h-values

for orthotropic shells that represent stiffened shells should be modified, or the valid range

(13
See Appendix A for list of symbols and definitions.
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of the theory extended for orthotropic shells. Arguments for a modification of R/h-values
using a modified h-value, which we will call (heq), are based on the dependence of the
stability criterion on the bending rigidity of the shell. Similar arguments are used for the

extensional stiffness. Suggested values for (heq) are:

_ 1/3
heq = (12 qu)

where qu is the composite moment of inertia of the shell plus stiffeners;
_ 1/3
heq = [6(1xx + Iss) ]

where lxx and Iss are the equivalent composite moments of inertia in the axial and circum-
ferential directions, respectively; or heq = f(r), where r is the radius of gyration of a
unit element of the orthotropic shell. It is believed that if the shell is analyzed with
R/heq = 200 the small deflection theory will be applicable.

Investigation is being conducted (7) which may allow the proper selection of an
R/h-value for orthotropic shells with an heq-value. Again the question of an R/heq -value
for orthotropic shells is left for experimental evaluation and/or results of investigations in
progress.

For short cylinders (R 2 L) the assumed deflection expression, Equation 26, reduces
to the Euler column expression when the cylinder is simply supported, if the circumferential
deflection terms become constant. For long cylinders (R = L/3) the buckling becomes
independent of the boundary conditions. In these ranges this analysis is valid for values

of wR/L, but the intermediate range (|_§ RS L/3) the results should again be experimentally

verified.

lil. ASSUMPTIONS

The following assumptions are made in this analysis of ‘circular shells.

1. The shell is composed of linearly elastic material.

2. The stiffeners and baffles are integral parts of the shell, thus creating an ortho-
tropic shell, and the unstiffened and unbaffled shell reduces to the isotropic case.

3. The shell stresses in the unbuckled but stressed state are determined by elemen-

tary beam theory.
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4. The strain equations, Equation 1, are similar to those used by Bodner (1) except
for certain second degree terms. The second degree temms are included in this analysis
since their effect although unknown, is considered significant. The last term on the right
hand side of the e equation, Equation 1, includes a non-dimensional constant k. With
values of k equal to one and zero, the effect of this term on the final results can be
detemmined.

5. The work in the circumferential direction is neglected in the detemination of

the total change in energy expression. This is based on the symmetry of both of the o i

stresses and the cylindrical shell geometry.

6. The pre-buckling deformation discussed by Donnell and Wan (6) and Stein (8) are
neglected. The effect of these deformations should be investigated during experimental
verification.

7. In the development of the Donnell equation, all terms above the second order

simplifies the mathematics and insures a small deflection theory approach to the analysis.

8. Localized or panel instability is neglected in this analysis and only the general
instability of the shell is investigated.

9. The assumed deflection expression, Equation 26, contains only 6 circumferen-
tial terms, but can be extended to any number desired. The use of six terms requires that
a cubic equation be solved and this solution can easily be programmed. Additional terms
in the deflection expression would complicate the computer program and possibly produce
a computer overload. The axial temm in the deflection expression contair~ a nondimen-

sional constant m which is used to obtain any number of buckling modes.
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IV. CYLINDRICAL SHELL GEOMETRY AND STRESS~STRAIN RELATIONS

Fig. 1: Coordinate System and Displiacements of ihe Circular Cylindrical Sheli.

The coordinate system and corresponding middle-surface displacements for the
circular cylindrical shell are shown in Figure 1.

The expressions used for the buckling strains in the shell wall; written in terms of
the shell middle-surface displacements, u, v, and w; are the same as those given in Reference

(1) with some additional terms, and are written as follows:

_ 2 '
e “Yr, +(1/2) w re T EW

e =Vi T~ (w/R) + (I/2)(w,s +v/R)2 - z(w,ss +kw/R2) (1

SS
€ =(1/2)[u,  +v, +w, (W, +v/R) ] - 2w, +v, /2R)

where € x’ S’ and exs' are the axial, circumferential, and shear strains, respectively,
that occur during the buckling process; R is the radius of the cylinder; and k is a nondimens-
ional constant. When the subscript or subscripts associated with the middle-surface
displacements are preceeded by a comma, they denote differentiation with respect to the

indicated succeeding coordinate variables.

The stress=strain relationships for a homogenous orthotropic material in generalized
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plane stress, as given by Reference (1), can be written as follows:

Txx =Ex (exx ToHy ess)/(] " Mo B

$x | xs

%s Es‘ (ess * Pys exx) /0 - Hsx pxs) )
o =Ge

XS xS

where 9 Tss’ and o s are the axial, circumferential, and shear stresses, respectively;
Ex and Es are the moduli of elasticity averaged over the shell thickness in the axial and
circumferential directions, respectively; G is the average shear modulus; and Mo and Hox
are Poisson's ratios from the x to the s and s to the x directions, respectively.

For convenience in later calculations certain constants, similar to those given in

Reference (1), are introduced and are written as follows:

u] =Exh /2(] - szpsx)

Esh 720 - szpsx)

Gh/8

%N
1

@)

_U
|

£ ho/2400 - p g )

xs' 5X
D. = EhS/24(1 - p )
2 s Xs' X
3
D3 = Gh"/%
where h is the shell thickness; the a's correspond to the extensional stiffness of the shell;
and the D's correspond to the bending rigidity of the shell.

The following relationship between the elastic constants, based on Maxwell's

reciprocal theorem, is noted for later use.

Es Hes = Ex Fox )
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V. CYLINDRICAL SHELL LOADING AND STRESS RESULTANTS

HARERRRRRERI

— G S
a_— N\
-+~
-]

\
VLR

Fig. 2: Loading of the Circular Cylindrical Sheii

The positive shell loads Py Po' and Mo are shown with respect to the coordinate
system; where Py is the uniform radial pressure, Po is the resultant axial load, and Mo
is the resultont end moment. The positive loads are directed in order that positive stresses
(tensil) are induced ot the origin of the coordinate system.
The following stress resultants are defined:
_ h/2 . h/2 _ _ h/2
Nxx - ‘£h/2 c’xxdz Nss - '[h/2 ossdz Nxs = ‘/—‘h/Z oxsdz
where I—\l—xx, N—ss , and N—xs are the axial, circumferential, and shear stress resultants in
the shell wall, respectively, prior to buckling; and ;xx ' ass' and axs are the axial,
circumferential, and shear stresses in the shell wall, respectively, prior to buckling. In
general the barred symbols indicate stresses, strains, and stress resultants in the shell prior
to buckling, while un-barred symbols indicate stresses and strains that occur in the shell
during the buckling process.
According to elementary beam and shell theory, the shell loading will induce the

following stresses in the shell wall.

(5)
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BXX = (1/h) [Mocos(s/R) + (R/2) (Pa + Po)]
o . = (I/hpR (6)
o, =0

where M =M /1rR2 and P =P /x R2.
a o a o

Substituting Equation (6) into Equation (5) and integrating over the shell thickness

the stress resultants become:

s~ Pol

)
WXX =M _cos (s/R) + (R/2)(po + PO)

Vi. STRAIN ENERGY, POTENTIAL ENERGY, TOTAL CHANGE IN ENERGY, AND
VARIATION IN TOTAL CHANGE IN ENERGY EXPRESSIONS.

The instability differential equations of equilibrium will be derived using a procedure
similar to that given in Reference (1). The criterion of buckling for an elastic system is
that the potential energy of the system is a minimum. Stated mathematically, the variation
of the change in energy of the system due to buckling, with respect to the displacements,

must be zero; or:

§(U +V)=0 (8)

where U is the change in strain energy of the shell during buckling, V is the change in
potential energy of the applied loads during buckling, and & indicates a variation of the
sum with respect to displacements.

The change in the strain energy of the shell is given by the following expression:

X * 0'SSeSS * UXSeXS) ] d\/S (9)

U= fvs [(oxxexx + o e + axsexs) + (1/2)( o S

where 0 , 0, and o _ are the membrane stresses in the shell wall in the stressed but
xx’ ss xS

unbuckled state and they are assumed to be constant during buckling; O o %s’ and o are
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the superimposed buckling stresses; € ! Cs’ and e ore the buckling strains; and Vs is
the volume of the shell wall.
The change in potential energy of the shell during buckling has components in the

z and x directions and the total change in potential energy during buckling is given

by the following expression:

V=-f plwdA -/, Bxxu dA_ =J, pwdA_-Sy h Bxxu,dis (10)
S e S S

where AS and Ae are the surface and cross sectional areas of the shell, respectively; and
u is given by the expression v = _It Y dx.
The total change in energy, strcin energy plus potential energy, during buckling
is obtained by adding Equation (9) to Equation (10); substituting Equations (1), (2), (4), (5),
(6), and (7) into Equations (9) and (10); and integrating over the shell thickness. The

expression for fotal change in energy is given by the following expression:

U +V=f, (o [v, R+(ws R/2) +w, v + (/2R +(ws R/4)]
S
+ Pu [w2,xR/4] +Mocos (s/R)[w,2X/2]} dAs
2 2 2,2
+ Sy {Eb20-p p )Ilv, ]+ [Eh/2(1-p p VIIv7, +w /R")
S
= (2V,SW/R) + FXSU’)_(V'S - (szu IXW/R)]

2 2 2 2 2,2
+[Gh/8][v2,x U +w,xw,s +(w,xv /R7) +2V'xu's +2v,xw,xw,

()
+ (2v,xw,xv/R) +2u,§w,xw,s + (2u,sw,xv/R) +(2w2,X w,sv/R) 1} dAs
+/f {[haE 24(1- Y 2 +u w, w, +kuy w w/R2)]
A >/ HoxcHus! 1T e 7 B e rss Hsx™ 7 xx
s
2 2 2 4
+ThOE /24(1-p_p )][ws+ @w, Jow/R) +(k w2 /Y

2
* P 7 xx " ’ss +(pxskw’ xxW/R )]

+[1Gh /9611w, 2 + v, 2RO + (hw, v, /RVIFAA
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Substituting Equation (3) into Equation (11) and discarding all third order and

greater terms the expression for total change in energy reduces to:

U+V = .[A { po[v,sR +(w,52R/2) tw, v +(v2/2R) +(w,)2( R/4) ]
S
+P° [w,2x R/4] + Macos (s/R) [w,2x/2]
vay Lo, ey v+ W2/ -0, /R + v, = v, w/R)]
+(’3[\/'2x +U'2s+2v'xu’s] + Dl [w'ix+Psxw'xxw’ss +k Psxw'xxw/Rz)] (12)
+ D, [wry, +@w, Jow/R0) + 0O/ + o, o+ o, /R ]

2 2 ,2
+D3 [4w,xs+(v,)/R ) +(4w,xsv,)/R)]} dAs

where ays Oy O, D] , D2, and D3 are as defined in Equation (3). Several authors,
including the author of Reference (1) have proven that the ommitted terms are negligible.
The use of terms up to the second order will result in a linear differential equation.

Applying the variational principal,

_ OF aF , , OF " oF n
5F-5;8y+-a-;,8y+§7"8y+...........+ayn8y, (13)

to Equation (12), the following expression for the variation in the total change in energy with

respect to the displacements u, v, and w is obtained:

8U+V) =y | (o, [@2w/RD) - @v, /R) = (1 0, /R)]
S
+D, [(2w,ssl</R2) +2 pxsw,xxk/Rz) + @2w/RY 1) sw
+{ Maw,xcos(s/R) + (pon,)/Z) + (PaRw’x /2)} 8w,x (14)

+ {Po(w'sR +v)} 8w,s

2
+{D][2w'xx+2psxw'ss +(2 pska/R )]}Sw'xx
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2
+ {02 [2w,ss + (2kw/R") +2|stw,xx 1} sw,ss
+{ D3[8w'xs+(4v')/R)]}8w'xs

Ha (20, ] + oy [p v, = o w/R) 1} B0,

(14 Con't.)
tag (20, +2v, 1} 8u, + {p_ [(v/R) +w, 1} 8v

+{ag [2v, +2v, 1 +Dy[(2v, Var (4w, /R)1}bv,
+{poR + a, [2v,s - (2w/R)+pxsu,x 1} 8v,s dAs

Equation (14) is simplified further by semng dA = dxds; applying the following

. . dx
identity from calculus of variations, 8 — = (8 ), ond integrating between the limits

dy

of O to L fordx, and 0 to ZuR for ds.

T'ne final form of the expression for the variation
in the total change in energy of the orthotropic cylindrical shell during the buckling
process is as follows:

L 2nR
BU V) = 4 f [{2a Lon/R) = (v, /R) = (v, /2R))

2 4
+202[(2w,ssk/R ) +(pxsw,xxk/R )+ (KwW/RY +w, +pow, ]

$8SS XS | XXSS

! - [Mow,xxcos(s/R) + (Rw,x)/Z)(pO + Po) ]-[po(w,ssR + v,s) |

2
+2Dl [w’xxxx T H MW s +(“ska'x/R )]

SX

(15)
+ 4D3 [2w'xxss+ (v'xxs/R) ]} 6w

+{-2 O] [lex +(“SXVIXS/2) = (PSXWI)/2R) ]-2 GBIU'SS +V'XS]}8U

+{-2ay [v, ~tw, /R) +(p v, /2] + [p (w, +Q)]

-2a ] - 4D [(v /2R ) +(w, /R)]}Sv dxds

3 [V’xx
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L
2
+ _/‘; {[po(W,SR +V) ] - 2D2[w’SSS + sz w'XXS +(kW,S/R )]

24R
—4D3[2w'xxs+(v'x>/R)]}o Sw
2R
+{2u3[u,s+ Vi ]}o Su
+{p R+2a, [v, -(w/R) +(p u, /2112 ™R8y
o 2" 's Py 7 x o
2R

2
+{2D2 [w’ss +pxsw'xx + (kw/R )]}o Sw,s dx

2aR
2 7| s cos (o/R) + (w, /206 +P ) ]

2 '
-2D][w,x N + Mo Wroo +( Psxk Wi /R 1 (15 Con't.)

X
~4D5 (2w, _ +(v, /R) ]}2 Sw

+{2ay[v, 1+ 28, (3 v,/2) = (u w/2R) 1] B

+{2 ag [v,x +u,s ] +4D3 [(v,x/2R2) +(w,x/R)]}'; Sv

2 L
+{ZDI [w'xx * MW7 ss +(Psxk w/R )]}o 8W'x l ds

2wR
+| (4012w, 400 RTE L Sw

Vil. EQUILIBRIUM EQUATIONS AND NATURAL BOUNDARY CONDITIONS

The variation in the total change in energy of the system must vanish for any of
the arbitrary virtual displacements &u, 8v, and &w when the system is in equilibrium. When
Equation (15) is equated to zero the integrands of the surface integral must vanish, since
the virtual displacements are arbitrary, and the following stability equilibrium equations

are obtained:;

ve L= ag=layp /21 +v [p /2RI +v, (D /R) -ay1+v, [-ay] o

tw, - 2D, /R) + w, [ /2)- (ay/R)] =0
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v'xs[-a3_(02pxs/2)] +U'xx [-a] ] +u'ss [- 9% ] +w'x [02 Pys /2R 10 (17)
le [- GZFXS /ZR] + Vls [(—OZ/R) +("P°/2)] +v’XXS [2D3/R]
tw [(op/RD) + 62D, /R T +w, (@D, k/R) = (m_/2) cos (/R-R/A), # )] (8)

2

$SSS

+w

[2 PsxDl +403] =0

! xxsS

The following natural boundary conditions are obtained from Equation (15) when
the constant term and the integrands of the line integrals vanish for any arbitrary virtual

displacement,and derivative of an arbitrary virtual displacement.

T o
l Wi (.x/ )1 ]o

2. .L
[w'xx + MoV 7 ss * & “sxw/R )]o =0

2 24R _
[w'ss+ pxsw,xx+kw/R ]Z =0

2aR _
[Uls+lelo =

0

L _
[2u,x * Hox¥rs ™ (Psx W/R)L =0 _
2wR _ (19)
[P R+2a, (v, -w/R+p v, /2)]7"" =0
[a,(v, +u, ) +2D, (v /2R2 +w /R)]L =0
3V 'x s 3V 'x "xs o

2

[po(w’sR *v) -202 (w'sss + Hys™ * xxs H(W’s/R )

21rR=0

(o]

-403(2w,xxs + V,XX/R) ]
2
[me'xcos (s/R) + (Rw,x/2)(p° * Pu) - 201 (w’xxx * Mo * xss * “ska'x/R )

L _
_4D3(zw'xss + V’xs/R) ]o =0



VIll. DEVELOPMENT OF A DONNELL TYPE DIFFERENTIAL EQUATION FOR THE

STATIC CASE

The stability equilibrium equations are written in the following form:

XS

v =ap,v +ta,v +a,v +aw + apw
! P1 4 "xx res  A5%ryxs PV

2

v, =a,u +a,u, ta,w
'xs 1 "xx 3'ss 6 'x

c]u,x+ Py Vi + oV r s = b4w + [bp2 -MOR cos(s/R)]w,xx + bp]w,ss

+b]w,x

X

where:

9P, = P28 * %

bp) =P, bg+ by

bp2 = p°b7 + Pob7 + b8
Py = Po3 " ¢4

and:

a, = -2 a,/(p  ay +2ag)

a,= -202/( T +2 03)

a3 = "2ay/(p, o + 205)

a, = 2Dy +ay RO)/R (4 _ay+ 2a3)
ag = -4Dy/R(p _a, +2a5)

06 - 02 FXS/R(lJXS u2 * 2 03)

a, = 1/R(p,_a,+2a;)

ag = l/(pxs a, +2a3)

+b.w
XX 3" "xxss

(16a)

(17a)

(18a)

(20)

(20 a)
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99 = ~20p/Rlp ay+2ay)

b, = 2D.R
b, = 2DR
by = 4D, Ry, +8D,R
b, = 2(&% 0 +17D,)/R°
b, = R
b, = 4kD/R (200 Con't.)
b = -R%/2
bg = 4n kD /R
€17 92 Hys
= -4D3
= R
¢, = 2aq
A linear differential operation is defined as follows:
52 2 4 5 5
Q= a,ap, ;:2 +agap, ;:2 +a,a, 5;4 + (a0, +aqa, -1) 5;5-55—2 +a,0, —65—4- @1)

By successive differentiation and combination, Equations (16a) and (17a) will have

the following form:

Qu=- [aéap]w,x ¥ (0206 * GPZ) Wi xss * 476" xxx i O5W 1 xxss ] (220)
Qv T T [(a]qu * 06) W xxs ¥ 93P 55 * 1957 xxxxs ¥ 93%5™ 7 xsss (22b)
Operating on Equating (18a) with the differential operator defined in Equation
(21) results in the following:
Q(c]u,x Toepyvi t C2v’xxs)
=Q [b4w + bpzw,xx-MoR cos(s/R) w, o F bplw'ss + b]w'xxxx (18b)

* b3W’xxss * b2W )

’sss8
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By utilizing Equations (22a) and (22b), all the u and v terms in Equation (18b)
can be eliminated. The resulting equation, an eighth order differential equation in w ,

is the required Donnell-type differential equation and is given as follows:

w +h, w +h, w +h,.,w
B0’ xxxxxxxx 62" "xxxxxxss 44" ' xxxxssss 26" "xxssssss

+ h08W’ssssssss * [h60 * hcéOMacos(s/ R)] W'xxxxxx * [h42 * hc42Macos(s/ R)]W'xxxxss

+ h24 * h624Macos(s/ R)I W1 xssss * h06W'ssssss * hs4l Masm(s/ R) Wi xxxs (23)

-+

h ..M sin(s/R) w, + [h, +h M cos(s/R) | w, + [h,,+h Macos(s/R)M'xxss

s23 a XXSS5 40 c40 a XXXX 22 c22
* h04 W1 ssss * thlMQSEn(S/R) Wryxs " [h20 * hCZOMQCOS(S/R) | Wiy + h02 =0
here
hgo = 980
hga = g2
hys= ey
has = 926
hog = Y08
heo = 960 * 60 Po * fo0 Fa )
he60= 90
hga = daat egPo * fap B
hea2= 949
h, =d  +e. p +f P



and:

hos = 906 * ©06Po

ho1= 94

hio3 = 993

_ - 2
hso= 900 240Po * S40P0 * F40PFa

he40= 940 * ®940P,

h,,=d

- 2
22~ 920" €pp P, Y egop, tefyyp P

22Ps'a

hpp= €9y P, T 90

-2
hoa =904 " %04 Po * €04 P,

hio1 = €95 P, * 9y,

h,.=e

20 ®20P

h.20 = €950P, T 920

h..=e

02~ €02Po

d80 = a]a4b]

d +b](aa +a.,a,-1)+a,a,b

62~ 995% 192 7 93% 194°3

d,, =a,a.c +aab]+b3(aa +a 04-l)+alc|4b

44 352 723 172 "3 2

d26 = o2a3b3 + b2(0102 + aga, - 1)

dog = 929307

d,.=a a4b

60 17478

(24 Con't.)

(25)
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~-1)+a.a,b

= + +
d a.c, +a,a.c,+ta.a.c,ta,c b8(aa+a 19406

561 T 9954 T %27 %2 34

€4y = 9,053 + @ 0gey + 0ja by +agab, +aja by + b faja, +oga, - 1)

b(ca + a,a

f42 394~ 1)

=—R(oc +a,a

942 3941

= Qa,0.C c.ta.a -1

s A
d,y = 939564 T 939% o03Pg T bglajay taga, - 1

=aac+aoc+b5(aa+o -1)+a,ab,+aab,+aab

€94~ 93953 7 93%8%2 1927 %74

foq = 95937

994 = ~Rajay

d06 = 0203b6

e., =a,.a.b +aub2

06 2735 37

2(00 +a,a,-1)

941 374

923 404

d40=°4°6c] +a]a4b4

40~ 9198
ef, . =a.a,b

40 V77

940~ (]/R)(c:lcz2 + ajay - 1)

373 V72 "237

(25 an't.)
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eg40="RC|.‘O7
®40 = 919707
d,,=a,a,c, +a,a.c,+a

227 9%y T 9gCy T agc, tbylajay taga, - ) +age

®22 = g% T 9 9C3 T ajagcy taeq *aja by +alab,

e, =a.a +°°b5+aab

22~ %3 T 497 3%7°7

efyy = a5k,

(25 Con't.)

=a,a.c. ta.a.c, +a

€04 = 939C3 + 9595, + agab,

€04 = 9393 * 950505
852] = 20307

9oy = (/R (~4a.a.)
921 3

e20 = 0607(:] + a]a7b4

€9y = (1/R) a4a,
90" (1/R)(-0,)

e =aqQ

02~ 93%P4
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IX. DETERMINATION OF THE CRITICAL RESULTANT END MOMENT BY USE OF THE RITZ
METHOD

The classical Ritz method solution for the static buckling of a cylindrical shell, as
shown in Reference (1), requires that an assumption be made for the shape of the buckled cy-

linder. The following expression is assumed for the radial deflection:
w = [A] cos (s/R) +A2 cos (2s/R) +A3 cos (3s/R) +A4 cos (4s/R) +A5 cos (5s/R)
+A6 cos (6s/R)] [ sin(mux/L)] (26)

where A] through Aé are arbitrary displacement parameters; and m is an arbitrary positive
interger representing the number of buckling modes in the axial direction. The assumed
radial deflection expression satisfies the boundary condition for the coordinates x and s.
These boundary conditions, for a simply suppo

the ends of the cylinder and a periodicity of 2w, respectively, for the x and s coordinates.

The boundary conditions represented mathematically are:
w(x,s) =w(0,s) =w(L,s) =0 (27q)

w,xx(x,S) =w,xx(0,5) =w,xx(L,5) =0 (27b)

for the x coordinate, and:
wix,s) = w(x,s +2) (27¢)

for the s coordinate.

For convenience, Equation (26) will be written in the following summation form:

w= | An cos (ns/R) ] [ sin (mwx/L) | (26q)

where the n, an interger, is the summing index and has the values 1 through 6.
Substitution of Equation (26a) into Equation (23) will result in a residual force

per unit area F, and Equation (23) can be written in the following form:

F= [ sin(mux/L)] [G,+G,+Gy] (28)
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where

G,=MA B
an

i cos (s/R) cos (ns/R)

In

G2 = MaAn an sin(s/R) sin (ns/R) (29)

G3 = An BSn cos (ns/R)

and

3. _ 6 106 42,6 24,56 4,4
= R [ =h o (N/R) =h_pp (Na"/R) = b, (Xn"/R) +h_, 0 (X/R)

w
|

In
22,4 2,2
thegy (X0 /R ~hp (X/RT ]

= &% - h gy (MR = by 0203 /R%) 4, (32n/R%)] (30

o
|

2n

3 8,8 62,8 4 4,8 26,8

+hog 078 by /8 = by (X778 = by (30?8
= hgg 0578 +hyg OX/RY +hyy (WFnZ/RY 41, 0*/R%
2,2 2,2
A = m“R/L

Equation (26a) can be written again with a summation notation but using a dif-

ferent index, in the following form:

w = | Ar cos (rs/R)] [sin (mwx/L)] (26b)

where the r, an interger, is the summing index and has the values 1 through 6. Equation

(26b) can now be written in the form:

w = Go sin (mmx/L) (31)

where

Go = Ar cos (rs/R) (32)
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The work done by the residual force, F, during the radial deflection of buckling
is obtained from the product of Equations (28) and (31) and is given as follows:

Fw = [ sin (mmx/L) ] [G G, +G_G, +G_G,] (33)

1 2

The expression for Fw must be evaluated over the surface area of the cylindrical
shell to obtain the total work W expression given as follows:

TR

2
w= f Fw ds dx (34)
0

O r

Substitution of Equation (33) into (34) will result in the following expression:

-

nR

C)\N

W= Jf [ sin2 (max/L) ] (GG, +G_G, +G_ Gy dsdx (35)
0

2

Integrating Equation(35)with respect to x will give the following:

2qxR
W=(L/2) S [GOG] +G0G2 + GoGB] ds (36)
0

Evaluation of the integrals of the products GoG] , GoGZ' and GoG3 will give

the following:

2qR 21R
w2 G G,ds=M B, A A (L/2) [ cos (s/R) cos (ns/R) cos (rs/R) ds
0 o 1 a In n' ¥ 0
= Ma Bln An Ar (nRL/4), when r=n +1 (37q)
2qR 2R
(L/2) of GQG2 ds = Mc an An Ar (L/2) Of sin (s/R) (ns/R) cos (rs/R) ds
= M(J an An Ar (vRL/4), whenr=n-1; (37b)

and = -M':| an An Ar (wRL/4), when r =n+l
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2nR 2%R
(L/2) Of G°G3 ds = B3n An Ar (L/2) Of cos (ns/R) cos (rs/R) ds
= B3n An Ar (vRL/4) when r =n (37¢)

All other combindtions of r and n values not specified by the r-n condition
equations will cause the integrals to vanish. Substitution of the specified values for r and

n into Equations (37a), (37b) and (37c); evaluation of these equations; and separation of

terms will result in the following general expression for the total work during the buckling

due to the radial deflection:

5
L (B],n +B],n+] - BZ,n +82,n+1”

MO
o
[~

+
Z
>
=1
>
3
st

W = (wRL/4) [
(38)

where the values of n are as specified on the summation symbols.
Equation (38) is minimized with respect to the arbitrary displacement parameters

An when n again has the interger values 1 through 6. This procedure will result in the

following system of algebraic equations:

oW _ - Mgx

ow _ M_ = = Mg = _

W 0. Mg +a B, +AME. -0 (41)
6A3 T2 32 3733 4 "34

W _ Ma 7 n Mag = 2
TA4 =0: A3 343+A4B44+A5 845 0 (42)
W _ . Mgz n Mg - 3
B, O: Ay %Bg, +AgBs5 +ABs =0 (43)
AW . My 7 = - A4
-5K_ = 0: A5 865+A6866 0 ( )

6
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where:

Bn’n = 2B3nl

n = ltob (45)

=B = (B, +B B, ~+B n=1t5

n,n+l n+l,n 1,n 1,n+l %2 2,n+l);

The coefficients of the An terms in Equations (39) through (44), when written

in determinate form, result in the following expression:

B, MTB, O 0 0 0
MyByy By M By 0 0 0
_ 0 MiByp By MyBy 0 0 (46)
©) =
0 0 M By B, M, O
0 0 0 MyBsy  Bgg M Bsg
0 0 0 0 M B, B

and Equations (39) through (44) can be written in the following matrix form:
(51 ] =o “7)

Since the arbitrary displacement parameters, An’ are real; the determinani, (D), must vanish
for all values of An' Therefore, evaluation of the determinant (D), which results in a sixth
degree equation in Ma’ will give the critical resultant moment, Mc cr, of the circular cylin-
der for the particular values of Py and Po used in the evaluation of the h-constants in Equation
(24). The desired value of Ma cr is the lowest, positive, real root of the following character-
istic equation:

2

T + T, M +1
o a

4
] Ma+T3N€1—0 (48)

2
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where:
T, = [ByByyByByyBssByyl
_ — 2 - R
Ty = -[B)8,)B33B,, B + B, 8,838, 8,
+8..8..5..8,.82 +3..8 3 B2
11 822 B55Beg B3y * By By BssByg Bya (49)
B33 By Bos Byg 12]
5 5282 +5 5 5282 455 5252
Ty =By By B3y Bsg* By By BygBy +B By ByaB,.
5.5 5282 4% 22 - - -2 -
By3Byy By Bss + By3 B B By + BB, B, By,
=2 _2 _2
Ty = - [B,,85, 85 ]
X. CONCLUSIONS
The general instability of an orthotropic circular cylinder subjected to an axial

load, end moment, and uniform radial pressure has been analyzed by a technique paralleling

the technique used by Bodner (1). The analysis has been successfully programmed, see Ap-
pendix C, and the program has been run with arbitrary data. The results obtained with the

arbitrary data could only be visually checked and were within the range of expected results.

The program has not been used in conjunction with experimental investigations.

Xl. RECOMMENDATIONS

it is assumed that this investigation of orthotropic shells will be continued on
an experimental basis, and that the experiments will attempt to verify and/or modify the

existing analysis as well as refine and modify the computer program that has been written.

The recommendations that are stated are intended as a guide for the experimental investigators.

The deflection expression, Equation 26, should be extended to a minimum of 12 circum-

ferential deflection tems and possibly extended to 16 or 24 terms should computer capacity

allow this extension. This extension will improve the accuracy of the analysis.

The axial term of the deflection expression, the sine term, should be extended to

contain a cosine term, that is, sin (mnx/L) +cos (mux/L) . The axial term will then

allow a variation of end conditions, which become significant in the short cylinder range
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and possibly the intermediate cylinder range. This modified axial term can also be used to
induce deflections due to the pre-buckling stresses.

An odditional term can be added to the deflection expression to account for the
initial imperfections of the cylinder.

The discarded roots of the characteristic equation should be mathematically in-
vestigated, and the meaning of the imaginary roots should be ascertained.

The sensitivity of the program should be checked for each of the dependant
variables, geometric and loading. Each modification of the program should be checked for
the possible changes in sensitivity that can be expected.

A normalization of the final program is recommended which will allow a compari-
son with other information existing in the field.

Since stability of orthotropic shells is both a general and local stability problem
the program can be extended to include the local stability probiem by evaluating existing
investigations in this field.

Results obtained by other investigators can be checked with the program to deter-

mine whether or not the program is valid.
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APPENDIX A ‘
|
SYMBOL TABLE 1
Ae - Cross-sectional area of the shell.
As - Surface area of the middle surface of the shell.
A] , A2, etc. - Arbitrary displacement parameters for the assumed deflection |
expression. ‘
ays dg, etc. ~ Constants for the stability equilibrium equation defined by
Equation 20a.
apy, ap,, efc. ~ Constants for the stability equilibrium equation defined by
Equation 20.
B]n' an, B3n - Generalized consianis defined by Equation 30.
B8 ,B - Generalized constants for the stability determinant defined by
n,n’ n,ntl .
Equation 45.
b] . b2, efc. - Constants for the stability equilibrium equation defined by
Equation 20a.
bp] ' bp2, etc. - Constants for the stability equilibrium equation defined by
Equation 20.
Cyr €y efc. - Constants for the stability equilibrium equation defined by
Equation 20a.
CPys CPy efc. - Constants for the stability equilibrium equation defined by
Equation 20.
D] , D2, D3 - Bending rigidities for the axial, circumferential, and shear strains
respectively.
(D) - Stability determinant.
don, d, ., etc. - Constants for the Donnell differential equation defined by
80’ "60 Equati
quation 25. |
E - Modulus of elasticity for the isotropic case.
E, Es - Moduli of elasticity averaged over the axial and circumferential
x

directions, respectively.
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- Axial, circumferential, and shear strains, respectively,
occurring during the buckling process, defined by Equation 1.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Residua! force per unit area remaining in the shell as a result of the
assumed deflection expression.

- Constants for the Donnell differential equation defined by
Equation 25.

- Average shear modulus, where G = E/(1 + )

- Constant defined by Equation 32.
- Constants for the residual force equation defined by Equation 29.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by Equation 25.

- Shell wall thickness.

- Shell wall thickness modified for the orthotropic case.

- Constants for the Donnell differential equation defined by
Equation 24.

- Constants for the Donnell differential equation defined by Equation 24,
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hs4l , h523’ etc. - Consh:.:nis for the Donnell differential equation defined by
Equation 24.

k - Non-dimensional integer constant.

L - Length of cylindrical shell.

M_ - Modified end moment defined by M_= M_/xR’

Mo - Applied end moment.

m - Number of buckling modes in the axial direction.

N ,N,N - Axial, circumferential, and shear stress resultants in the shell

just prior to buckling defined by Equation 5.

P - Modified axial load defined by P_ = P_/ %R’

Po - Applied axial load.

Py - Applied uniform radial pressure.

wR/L - Circular shell radius to length ratio.

Q - Linear differential operator defined by Equation 21.
R - Radius of circular shell.

R/h - Circular shell radius to thickness ratio.

s - Circumferential coordinate of circular shell.

To’ T] , etc. - Constants for the characteristic equation defined by Equation 49.
U - Change in strain energy during buckling.

v - Axial deformation of an element of the circular shell.
\ - Change in potential energy during buckling.

A - Volume of circular shell wall.

v - Circumferential deformation of an element of the circular shell.
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- Total work due to the residual force during buckling.
- Radial deformation of an element of the circular shell.
- Axial coordinate of the circular shell.

- Radial coordinate of the circular shell.

- Extensional stiffnesses for the axial, circumferential, and shear
strains respectively.

- Variational symbol.

- Coordinate angle corresponding to the circumferential coordinate,

where 0 =s/R.
- Constant defined by Equation 30.
- Poison's ratio for the isotropic case.

- Poison's ratios fromthe x to s and the s to x directions,
respectively.

- Axial, circumferential, and shear stresses, respectively,
occurring during the buckling process.

- Axial, circumferential, and shear stresses, respectively, in the
circular shell just prior to buckling.
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APPENDIX C

COMPUTER PROGRAM

The solution of the problem being investigated here requires that an n-th degree
polynomial in Ma be solved for the lowest, positive, real or zero root. The degree of
this polynomial, the characteristic equation of the stability determinant, Equation 48, is
equal to the maximum value used for n in the deflection expression, Equation 26a. The
applied end moment can be plus or minus and still have the same stability condition, there-
fore the characteristic equation can be considered as a polynomial in M02 and the roots of
the characteristic equation are determined by the cubic formula. The values of M, are
then obtained by taking the square root of the Mc‘2 value.

in the development of this problem, the total change in energy expression,
Equation 11, is manipulated by certain mathematical operations. After each manipuiation
a new set of constants is obtained. These new constants are defined in terms of previously
defined constants, etc., and finally all constants are defined in terms of the extensional
stiffnesses and bending rigidities, Equation 3, and other input variables. Therefore, the
problem that the computer program must solve is an evaluation of successive sets of constants,
and the solution of the characteristic equation for the desired root. A computer program
type-out is shown in Appendix D,and this program is written in Fortran H for an IBM 1620
computer.

In the investigation of an orthotropic shell, the ays Ao D] and 02 values,
Equation 3, are calculated for a particular orthotropic shell using heq' These values are
then rationed to the respective isotropic shell values, a and D, which are obtained by
using h values. These ratios are used as input variables in the fom: Al1A, A2A, DID,
and D2D; where A1A = a I/c:l , etc. Similarly the input values of L and h appear in
the computer program as ratios in the form aR/L and R/h, respectively.

In any stability problem it is necessary that the sensitivity of any or all variables
be investigated, and that a study of the output variable M(J for certain ranges of the input
variables be made. An iterative process that incruments the input variables between certain
desired limits permits these studies. All input variables can be iterated with the exception

ofE,pxs, Mo and R.
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The iterative process requires three input values for each of the following input
terms: AlA, A2A, DID, D2D, R/h, wR/L, P, Po’ k and m. These values are: the
initial value, also the minimum; the maximum value; and the increment by which the input
variable varies between the initial and maximum values.

The program outpuf is Mu vs. Po' A sample output format is shown in Appen-
dix E. This sample output format is for arbitrary values of the input variables.

When a constant value, non-incrumented value, of an input variable is used in
a particular computer run, the initial value and maximum value must be the same, and the
incrument should be an arbitrary positive number.

An increase in the number of terms in the deflection expression will require a
change in the root solving portion of the program, since the cubic formula will no longer
provide a valid solution to the characteristic equation.

The symbels used in the computer program are self-explanatory except symbols
B11, B12, and B13 which are the b v b2 and b3 constants of Equation 20q,respectively.

A partial list of definitions and computer program symbols is given in Appendix F.

Certain constants used in the text of this paper do not appear in the computer
program. These constants have been incorporated into succeeding constants with the in-
tent of conserving computer storage.

The program must be precompiled with format, since an overload condition

exists on a 40K bit storage when the program is precompiled without format.
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APPENDIX D

COMPUTER PROGRAM TYPE-OUT

NO NN

M

100

10

222

225

15

25

223

35

45

PROGRAM FOR THE STABILITY ANALYSIS OF AN ORTHOTROPIC CIRCULAR
SHELL WITH AXIAL LOADs END MOMENTs AND RADIAL PRESSURE.

THIS PROGRAM IS WRITTEN IN FORTRAN II FOR AN IBM 1620 COMPUTER,
INPUT DATA (5 CARDS) - ALL DATA IN 8 DIGIT FIELDS
READS501+EsVXSsVSXeR

VALUES FOR PRESSURE AND AXIAL LOAD
READ5019sAPOsPOINCsPOMAX s ABGPOsBGPOI yBGPOM

INITIAL VALUES (MINIMUM)
READS501sAROH s ARPLsAAIASAA2ASADIDSAND2DsAFKIAEM

INCRUMENT VALUES
READS501sROHINIRPLINSALIAINIAZAINSDIDINSD2DINSEKINCHIEMINC

MAX IMUM VALUES

READS501 sROHMX s RPLMX s ATAMX 9 AZAMX s D1DMX s D2DMX s EKMAX s EMMAX
DIMENSION V{81 U(B8)sS5(698)sB1{8B)sB2(8)sB3(B)sX(6YsY (D)
REPEATING CONSTANTS

PI=3141593

Fl=1.

F2=2e

F3=13.

F4=4,

PAINC=BGPOI /(P *#R*R)
PAMAX=BGPOM/ (P *R#*2)
INITIALIZING STATEMENT
EK=AEX

INITIALIZING STATEMENT
EM=AEM
Utl)y=F1/R
DN 222 N=2.8
U(N)=U(1)**N

NO 225 1=146

DO 225 J=1+8
D=1
S(TsJ)=Dx#
INITIALIZING STATEMENT
RPL=ARPL
QUTPUT STATEMENT
PUNCHS5109sE s VXSeVSXsRIEKIEM
EL=R*P 1 /RPL
VI1)=EM*PI*R/EL
DO 223 N=2.8
VIN)=V({1)#%N
ROH=AROH
QUTPUT STATEMENT
PUNCH5124RPL
INITIALIZING STATEMENT
N2D=AD2D
QUTPUT STATEMENT
PUNCH515sROH
INITIALIZING STATEMENT
DIN=ADI1D

INITIALIZING STATEMENT
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55

60
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A2A=AA2A

INITIALIZING STATEMENT

AlA=AA1A

INITIALIZING STATEMENT

PO=APO

OUTPUT STATEMENT

PUNCHS511sA1AsA2A4D1DsD2D

H=R/ROH

CONSTANTS FOR EQULIBRIUM EQUATIONS
AX=F1-VXS*VSX

Ql=F1/(E*H®(VSX/ (F2*¥AX)~F1/(F4*(F1-VXS))))
Al==F2*Q1*ALIA*E*H/ (F2%AX)

A2=A1*#A2A/A1A

A3=—F2*Q1*E*H/ (B *¥(F1+VXS})
AS=—F4*(Q1/RIXEXHR¥F3/(964%(F1+VXS))
A4=A3+A5/(F2%R)

A6=A2%VXS/ (-F2%R)

A7=Q1/R

A9=—-F2%A6/VXS

Bl1=F2*RXDIDKEXHX*F3 /(24 4%AX)
B12=811%D2D/D1D
B13=sE*H*®F3#(F2%D]ID*VSX/AX+F1/(F1+VSX))*R/12,
B4=—A2%*R/Q1+B12*¥EK*¥EK/R*%F4

B5=—-R#*R

R6=B12*F2%EK/(R*R)

B7=-(R*%*F2)/F2

BB8=B11*F2¥VSX¥EK/ (R*R)

C1=VSX*AA*E*H/ (F2*AX)

C =—E*¥H®RF3/(244%(F14VXS))

Ca=F2%#C1l/VXS

CONSTANTS FOR DONNELL EQUATION (EQUA. 24 AND 25)
HBOD=A1*A4*B]1]

Q2=A1*A2+A3IXA4L-F]
H62=A1%(AS*C2+A4%B13)+B11*Q2

H44=A3% {AS*C2+A2%B11)+B13*Q2+A1%*A4*¥B12
H26=A2*xA3%B13+B12%Q2

HOB=A2%A3%#B12

E60=A1*(A7#B11+A4%*B7)

HC60=~R*A1*A4L
D42=A1*(AS*CL+AGRC2+ALRBE)+ASXC1+A6XC2+BB¥*Q2
E42=A1#(AS*R+Q1*#C2+A4%B5+AT*B13)+A3%AT#B11+B7%Q2
HC42=-R*¥Q2

D24=A3%(AS*¥C4+AI*C2+A2%BB)+B6*Q2
E24=A3%(AS*R+Q1#C2+AT*B13+A2%B7) +B5%Q2+A1XAT*B12
HC24=—-R%#A2%A3

EO6=A3%( A2*¥B5+AT*#B12)

HS41=F2%02

HS23=F4%A2%A3

D4O0=A4L* (A6*C1+A1%B4)

D22=C1* (A2%A6+A9)+C4*(A1*A9+AL)+B4%Q2
E22=A1*%(A9*R+Q1#C4+AT*B6)+A6*R+Q1*C1 +A3*AT%BS
EB22=A1*{Q1*R+AT#B5)+A3*ATXB7
DO4=A3® [ A9*CL+A2%¥B4)
EO4=A3%(A9*¥R+Q1*#C4+AT*B6)



[}

600

601

227

228

270

260

261
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EBO4=A3%* (Q1*R+AT*#B5)

H20=PO*A7* (A6*C1+A1%B4)

OUTPUT STATEMENT

PUNCH514PO

INITIALIZING STATEMENT

BIGPO=ABGPO

PA=BIGPO/ (PI#R#R)

H60=A1%A4% (BB+BT7*PA)+E60#PO
H42=D42+E42%PO+BT*Q2%PA
H24=D24+E24%PO+A2*%A3*BT#PA
HO6=A2*%A3%B6+E06#PO
H40=D4O+A1 ¥AT*PO* (B8+B7* (PO+PA) )
HC40=Q2/R-R*A1%AT*PO

H22=D22+PO% (E22+EB22*PO+A3*XAT*BT7#PA)
HC22=A3% (AT*R*PO+6+*A2/R)
HO4=D04+PO* (E04+EBO4*PO)
HS21=F2%A3% (AT*PO~F2%A2 /R**F2)
HC20=A3% (PO*AT/R-A2/R*%F3)
HO2=A3%AT*B4*PO

STABILITY DETERMINANT CONSTANTS (EQUA+45)

DO 227 N=1+6
B1(N)=—HC60*V(6)*U(3)-HCA2¥V(4)*U(3)*S(Ns2)-HC24*¥V(2)*U(3)*S(Ny&)
BL1(N)=B1(N)+HC4O0*V (4)*U(1)+HC22%V(2)*U(1)*S(Ns2)=HC20%V(2)*R
B2(N)=HS21#V(2)%S(Ns1)=HSL1%V(4)*U(2)*S(Ns1)=HS23%V(2)%U(2)*S(Ny3)
B3(N)=HBO*V(8)*U(5)+H62%V (61 *¥U(5)%#S(N»2 ) +HG4*V(4)%U(5)*S(Ns& )
B3(N)=B3(N)+H26%V(2)%#U(5)%S(Ns6) +HOB*U(5)%S(Ns8)—-H60%V(6)*U(3)
B3(N)=B3(N)+H42%V (4 ) ¥U(3)%S(N9y2) -H24#V(2)*U(3)%S(Ns4)
B3(N)=B3(N)-HO6*U(3)*S(Ns6)+HLO*V (&) /R+H22%*V(2) %#S(N»2) /R
B3(N)=B3(N)+HO4*S(Ns4) /R-HO2%*R*S (Ns2) —H20%V (2) %R
CONSTANTS FOR CHARACTERISTIC EQUATION (EQUA. 49)
X(N)=F2%*B3(N)

DO 228 N=1,s5

YON)=(BL(N)+BL1(N+1)~=B2{N)+B2(N+1)) %%2
TO=X(1)1%X(2)%¥X(3)%X(4)*X(5)%X(6)

T1==XO1)¥X(2) % (X{3) %X (&)%Y (51 +X(3)%X(6)*Y(4)+X(5)%X(6)*Y(3))
T1=T1-X(41#X(5)%€X(6)%(X{1)*#Y(2)+X(3)*Y (1))

T2=X(1) %Y (5) %X (2) %Y (3)+X(4)%Y(2) ) +X(6)*Y(2) %Y (4))
T2=T24Y(1) ¥ (X(3) % (X(4)*Y(5)+X(6)*¥Y(4))+X(5)%X(6)*Y(3))
T3==Y(1)%Y(3)%Y(5)

SOLUTION OF CHARACTERISTIC EQUATION (EQUAe 48)
Q=(F3%#T1/T3-(T2/T3)%%2 ) /F3

T=(F2#(T2/T3)%%3 9 %#T1%#T2/T3%%2 +27.,%#T0/T3)/27.
Z=T*%2 /F4+Q#%3 /27,

IF(2125052605270

BIGA=(Z*%.5-T/F2)*%(F1/F3)
BIGB=(-(2%%,5)~T/F2)%#%(F1/F3)

EMA2=BIGA+BI1GB

IF(EMA2)390+400,400
BIGA=(~T/F2)%*(F1/F3)

EMA21=F2*BIGA
EMA22=~BIGA

IF(EMA21)2619262,262
EMA2=EMA22
GO TO 400
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262 EMA2=EMA21
GO 10 400

250 THETA=ATANF((—(Q*%¥3 /274)~(T*%2 /F4))%#%,5/(~T/F2))
Q3=F2%(-Q/F3)%%,5
EMA21=Q3%COSF{THETA/F3)
EMA22=Q3%COSF(THETA/F3+F2%P[/F3)
EMA23=Q3%COSF(THETA/F3+F4%P[/F3)
IF(EMA211251+2524252

251 IF(EMA22)2584+259+259

258 I1F(EMA23)390,5282,282

282 EMA2=EMA23
GO TO 400

259 IF(EMAZ22~EMA23)2804+280,284

284 1F(FMA23)280,+281,281

280 EMA2=EMA22

GO TO 400
281 EMA2=EMAZ23

GO TO 400
252 IF(EMA21-EMA22)253+253+285
285 IF{EMA22)25352545254

253 EEMA2=EMA21
GO TO 255
254 EEMA2=EMA22
255 IF(EEMA2-EMA23)256+2569286
286 IF(EMA23)25692574+257
257 EMA2=EMA23
GO TO 400
256 FMA2=EFMA?2
400 EMA=EMA2%¥,5
EMO=EMA#P ] #R*%F 2
PUNCHS513+BIGPOsEMO
GO 10 391
390 PUNCHS516+BIGPO
BEGIN CYCLING OF INPUT DATA
391 PA=PA+PAINC
BIGPO=BIGPO+BGPOI
IF{PA-PAMAX) 60146015201
201 PO=PO+POINC
IF(PO-POMAX) 60056004202
202 Al1A=A1A+AlAIN
IF(A1A-A1AMX ) 6045609203
203 A2A=A2A+A2AIN
IF(A2A-A2AMX 1554559204
204 D1D=D1ID+DIDIN
IF(DID-D1DMX 509504205
205 D2D=D2D+D2DIN
IF(D2D-D2DMX 14549455206
206 ROH=ROH+ROHIN
IF(ROH-ROHMX ) 354354207
207 RPL=RPL+RPLIN
IF{RPL-RPLMX) 254259208
208 EM=EM+EMINC
IF(EM~EMMAX) 155155209
209 EK=EK+EKINC




210
101
501
510
511
512
513
514
515
516
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IF(EK-EXMAX) 105104210

OQUTPUT STATEMENT

PRINT 101

FORMAT(13HLOAD NEW DATA)

FORMAT(8F840)

FORMAT(20HE s VXS 9sVSX9sRADIKIM = sEB4292F5.29FB4292F5.1)
FORMAT(6X22HA1/AsA2/A+D1/DsD2/D = sF66293FT742)
FORMAT(2X20HPI X RAD / LENGTH = ,F6.3)
FORMAT(10X11HBIGPOSMO = +sE94293XE13,6)
FORMAT(B8X11HPRESSURE = +FB8a.2)

FORMAT (4X1B8HRAD / THICKNESS = sF9,2)
FORMAT(10X11HBIGPOsMO = +E942+6X4HIMAG)

GO 70 100

END
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APPENDIX E

COMPUTER PROGRAM OUTPUT FORMAT

INPUT DATA FOR THE FOLLOWING OUT-PUT FORMAT

30000000.3 «3 10.
15 15. 30. Oe 5000, 10000,
1200, 6 le le l. 1, 1l le
400, 2. le le 1. 1. 1. le
1600, 8. le 1. le 1. 1. le
QUT-PUT FORMAT
EsVXSsVSXeRADSIKsM = «30E+08 «30 ¢ 30 10,00 1.0 1.0
PI X RAD / LENGTH = 6.000
RAD / THICKNESS = 1200,00
Al/AsA2/AsD1/DsD2/D = 1.00 1,00 1.00 1.00
PRESSURE = 15,00
BIGPOsMO = «00E-99 4,145080E+08
BIGPOsMO = 5,00E+03 4,145072E+408
BIGPOsMO = 1,00E+04 4,145060E+08
PRESSURE = 30.00
BIGPOsMO = «00E-99 44145147E+08 |
BIGPO+MO = 5,00E+03 4,145134E+408 !
BIGPOWMO = 1,00E+04 4,145121E+08 1
RAD / THICKNESS = 1600,00 g
A1/AsA2/AsD1/DsD2/D = 1.00 1,00 1,00 1.00 ;
PRESSURE = 15400
BIGPOsMO = «00E~-99 3.,108863€+08
BIGPOsMO = 5.00E+03 3,108854E+08
BIGPOsMO = 1,00E+04 3,108838E+08
PRESSURE = 3000
BIGPOsMO = «00GE=-99 3,108928E+08 !
BIGPOWMO = 5,00E+03 3.108916E+08 :
BIGPOIMO = 1.,00E+04 3,108903E+08 §
PI X RAD 7 LENGTH = 8,000
RAD / THICKNESS = 1200,00 |
Al/AsA2/AsD1/DeD2/D = 1,00 1,00 1,00 1,00
PRESSURE = 15,00
BIGPOsIMO = «00E-99 2.344654E408
BIGPOsMO = 5,00E+03 2.344708E+08
BIGPOsMO = 1.00E+04 2.344760E+08
PRESSURE = 30,00
BIGPOsMO = «00E-99 2.344727E+08
BIGPOsMO = 5,00E+03 2.344779E+08
BIGPOsMO = 1,00E+04 2.346833E+08
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RAD / THICKNESS = 1600,00
Al1/AsA2/AsD1/DsD2/D = 1.00 1.00 1.00 1.00

PRESSURE = 15.00
BIGPOWMO = +00E-99 1.758522E+08
BIGPOsMO = 5,00E+03 1,758575E+08
BIGPOsMO = 1,00E+04 1,758626E+08

PRESSURE = 30.00
BIGPOsMO = «00E-99 1,758593E+08
BIGPOsMO = 5,00E+03 1.758646E+08
BIGPOsMO = 1,00E+04¢ 1.758698E+08




VSX

AlA
A2A

DID

ROH

RPL
EK
EM
PO
BIGPO
PA
EMO
EMA
AATA
AA2A
ADID
AD2D
AROH
ARPL
AEK
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APPENDIX F
PARTIAL LIST OF DEFINITIONS
OF COMPUTER PROGRAM SYMBOLS

Modulus of elasticity for isotropic case.

Poissoin's ratio for the x to s direction.

Poisson's ratio for the s to x direction. -
Radius of the shell.

= a]/u ; where a

En/2(0-p b )

02/0

D}/D; where D

ER/24(1 - )

IV
E 2

~n o/
Va/ U

R/h

=wR/L

k

m
P, radial pressure
P axial load

° 2
P, = P /=R
M  end moment

o2
Mo/ nR
initial value of A1A (minimum)
initial value of A2A (minimum)
initial value of DID (minimum)
initial value of D2D (minimum)
initial value of ROH (minimum)
initial value of RPL (minimum)

initial value of EK (minimum)
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- initial value of EM (minimum)

- initial value of PO (minimum)

- initial value of BIGPO (minimum)

- final value of
- final value of
- final value of
- final value of
- final value of
- final value of
- final value of

- final value of

n
4]

Py
il

£
v v

f

[
Q

1%

<]

2
C

|
[ 4

a
O

[
v

o]

i

- incrument of
- incrument of
- incrument of
- incrument of
~ incrument of
-~ incrument of
- incrument of
- incrument of
- incrument of
- incrument of

Length of shell

ATA (maximum)
A2A (maximum)
DID (maximum)
D2D (maximum)
ROH (maximum)
RPL (maximum)
EK (maximum)

EM (moximum)

AlA
A2A
DID
D2D
ROH
RPL

EK

EM

PO
BIGPO

Thickness of the shell




